
Heat Exchanger Theory and Intercoolers 
by John Estill

Theory 
An intercooler is a heat exchanger. That means there are two or more fluids that don't physically touch each other but a transfer heat or energy takes place between them. Turbo Regals made in 1986/87, Turbo TAs, GMC Syclones and Typhoons all came with intercoolers to cool down the hot compressed air coming from the turbocharger. Turbo Regals and Turbo TAs use outside air as the cooling media; Syclones and Typhoons use water. Turbo Regals made in 1985 and before did not have intercoolers as original equipment. At wide open throttle and full boost the hot compressed air coming from a turbocharger is probably between 250 and 350 deg F depending on the particular turbo, boost pressure, outside air temperature, etc.. We want to cool it down, which reduces its volume so we can pack more air molecules into the cylinders and reduce the engine's likelihood of detonation. How does an intercooler work? Hot air from the turbo flows through tubes inside the intercooler. The turbo air transfers heat to the tubes, warming the tubes and cooling the turbo air. Outside air (or water) passes over the tubes and between fins that are attached to the tubes. Heat is transferred from the hot tubes and fins to the cool outside air. This heats the outside air while cooling the tubes. This is how the turbo air is cooled down. Heat goes from the turbo air to the tubes to the outside air. There are some useful equations which will help us understand the factors involved in transfering heat. These equations are good for any heat transfer problem, such as radiators and a/c condensers, not just intercoolers. After we look at these equations and see what's important and what's not, we can talk about what all this means. Equation 1The first equation describes the overall heat transfer that occurs. Q is the amount of energy that is transferred. DTlm = (DT1DT2) * F where DT1 = turbo air temperature in  outside air temperature out The outside air that passes through the fins on the passenger side of the intercooler comes out hotter than the air passing through the fins on the drivers side of the intercooler. If you captured the air passing through all the fins and mixed it up, the temperature of this mix is the "outside air temperature out".
To calculate this correction factor, calculate "P" and "R":
This overall heat transfer equation shows us how to get better intercooler performance. To get colder air out of the intercooler we need to transfer more heat, or make Q bigger in other words. To make Q bigger we have to make U, A, or DTlm bigger, so that when you multiply them all together you get a bigger number. More on that later. Equation 2We also have an equation for checking the amount of heat lost or gained by the fluid on one side of the heat exchanger (ie, just the turbo air or just the outside air):

Pressure Drop 
Another aspect of intercoolers to be considered is pressure drop. The pressure read by a boost gauge is the pressure in the intake manifold. It is not the same as the pressure that the turbocharger itself puts out. To get a fluid, such as air, to flow there must be a difference in pressure from one end to the other. Consider a straw that is sitting on the table. It doesn't having anything moving through it until you pick it up, stick it in your mouth, and change the pressure at one end (either by blowing or sucking). In the same way the turbo outlet pressure is higher than the intake manifold pressure, and will always be higher than the intake pressure, because there must be a pressure difference for the air to move. The difference in pressure required for a given amount of air to move from turbo to intake manifold is an indication of the hydraulic restriction of the intercooler, the up pipe, and the throttle body. Let's say you are trying to move 255 gram/sec of air through a stock intercooler, up pipe, and throttle body and there is a 4 psi difference that is pushing it along (I'm just making up numbers here). If your boost gauge reads 15 psi, that means the turbo is actually putting up 19 psi. Now you buy a PT70 and slap on some Champion heads. Now you are moving 450 gm/sec of air. At 15 psi boost in the intake manifold the turbo now has to put up 23 psi, because the pressure drop required to get the higher air flow is now 8 psi instead of the 4 that we had before. More flow with the same equipment means higher pressure drop. So we put on a new front mount intercooler. It has a lower pressure drop, pressure drop is now 4 psi, so the turbo is putting up 19 psi again. Now we add the 65 mm throttle body and the pressure drop is now 3 psi. Then we add the 2.5" up pipe, and it drops to 2.5 psi. Now to make 15 psi boost the turbo only has to put up 17.5 psi. The difference in turbo outlet temperature between 23 psi and 17.5 psi is about 40 deg (assuming a constant efficiency)! So you can see how just by reducing the pressure drop we can lower the temperatures while still running the same amount of boost. I have seen some misunderstandings regarding intercooler pressure drop and how it relates to heat transfer. For example, one vendor's catalog implies that if you had little or no pressure drop then you would have no heat transfer. This is incorrect. Pressure drop and heat transfer are relatively independent, you can have good heat transfer in an intercooler that has a small pressure drop if it is designed correctly. It is easier to have good heat transfer when there is a larger pressure drop because the fluid's turbulence helps the heat transfer coefficient (U), but I have seen industrial coolers that are designed to have less than 0.2 psi of drop while flowing a heck of a lot more air, so it is certainly feasible. Pressure drop is important because the higher the turbo discharge pressure is the higher the temperature of the turbo air. When we drop the turbo discharge pressure we also drop the temperature of the air coming out of the turbo. When we do that we also drop the intercooler outlet temperature, although not as much, but hey, every little bit helps. This lower pressure drop is part of the benefit offered by new, bigger front mount intercoolers; by the Duttweiler neck modification to stock location intercoolers; by bigger up pipes; and by bigger throttle bodies. You can also make the turbo work less hard by improving the inlet side to it. K&N air filters, free flowing MAF pipes, removing a screen from the MAF, removing the MAF itself when switching to an aftermarket fuel injection system, the upcoming 3" and 3.5" MAFs from Modern Muscle, these all reduce the pressure drop in the turbo inlet system which makes the compressor work less to produce the same boost which will reduce the turbo discharge temperature (among other, and probably greater, benefits). 
What about my Intercooler? 
Wondering if your intercooler is up to snuff? The big test: measure your intercooler outlet temperature! When I did this I got a K type thermocouple, the thin wire kind, slid it under the throttle body/up pipe hose and down into the center of the up pipe, and went for a drive. On an 80 to 85 deg day I got a WOT temperature of 140 deg, for a 55 to 60 deg approach. That tells me that I need more intercooler. If I can get the temperature down to 100 deg, the air density in the intake manifold goes up by 7%, so I should flow 7% more air and presumably make 7% more hp. On a 350 hp engine that is 25 hp increase. On a 450 hp engine that's a 30 hp increase. Damn, where's my check book… Another check is pressure drop. Best way to check it is to find a pressure differential gauge, which has 2 lines instead of the single line a normal pressure gauge has. It checks the difference between the 2 spots it is hooked up to, as opposed to checking the difference in pressure between the spot it is hooked up to and atmospheric pressure, which is how a normal pressure gauge works. Hook one line of the gauge to the turbo outlet and one to (preferably) the intercooler outlet. The turbo outlet/intercooler inlet pressure is easy, just tee into the wastegate supply line off the compressor housing. It would be nice to get the intercooler outlet pressure directly, but there's no convenient spot to hook up to. Hooking into the intake manifold (such as via the line to the boost gauge) is quite convenient, but gives the total pressure drop: intercooler + up pipe + throttle body. That'll give you a pretty good idea though. Instead of the differential pressure gauge you could use 2 boost gauges, one in each spot, but then you have to worry about whether both gauges are calibrated the same, try to read both at the same time while driving fast, etc AND you may spring (ie, ruin) the gauge on the turbo outlet since when you close the throttle you get a big pressure spike that your normal boost gauge never sees. If you find more than 4 or 5 psi difference between the intercooler inlet and intake manifold (and I'm just giving an educated guess here, you'd probably want to refer to one of the intercooler manufacturers for a better number) then I would suspect that a larger, lower pressure drop intercooler would offer you some gains. 
Comparing competing Intercooler Designs 
How to compare competing intercooler designs: Well, ultimately you want the one that will give you the coldest air possible into the intake manifold. This will be the one with highest UA value. When you multiply the heat transfer coefficient by the area (U x A) you get the UA value. This value doesn't really change much with reasonable changes in flow rates or temperatures, so if you could get the data to evaluate the UA for an intercooler in one car then you can use that to extrapolate how it would work in another car. To evaluate the UA you need enough info to calculate the heat transferred (Q) and the DTlm. Then UA = Q/DTlm. Sounds easy, right? It would be, if the data was available. To properly evaluate an intercooler you would need: the turbo air flow through the intercooler; the pressure and temperature of the air from the turbo; the intercooler outlet temperature and pressure; the outside air temperature; and either the mix temperature of the cooling air as it leaves the intercooler or the flow rate of that air. That's a lot of info, and I'm not going to pretend that a vendor would make all that available to you, or that they would even collect all that data. I'm sure that the majority of the vendors selling bigger intercoolers have a trial and error process that they use to design their offerings rather than putting forth a real engineering effort anyway. But, if they did and they would release the info I would then use that data to figure out the amount of heat transferred (Q) and the DTlm, and then calculate the UA value for the intercooler. I would compare various intercooler's UA values and choose the one with the highest UA since that will give you the highest Q (most heat transferred) and the best DTlm (closest approach). 
Formula Examples 
Well, you've made it this far. If you'd like to see some examples using the formulas outlined in the beginning, read on. If not, well, I'm done. It's pretty easy to make a spreadsheet up to do all these calculations. Please remember that all these numbers have been made up! Any resemblance to real life is a happy coincidence. Stock intercooler, stock turbo. Given 40 lb/min air flow @ 300 deg F and 19 psig from the turbo to make 15 psig boost in the intake manifold; 85 deg F outside temperature; an intercooler outlet temperature of 140 deg F has been measured, as has the cooling air temperature of 160 deg. What is the UA of the stock intercooler? First, calculate Q Q = m * Cp * DT Q = 40 lb/min * 0.25 BTU/lbF * (300140 F) = 1600 BTU/min Calculate DTlm DT1 = turbo air temperature in  outside air temperature out = 300  160 = 140 DT2 = turbo air temperature out  outside air temperature in = 140  85 = 55 P=0.74, R=0.47, F=0.875 DTlm = F*(DT1DT2)/ln(DT1/DT2) = 0.875*(14055)/ln(140/55) = 74.4/0.934=79.6 F Calculate UA UA = Q/DTlm = (1600 BTU/min)/79.6 F = 20.1 BTU/minF What is the cooling air flow? Q = m * Cp * DT, or Q/(Cp * DT) = m, m = (1600 BTU/min)/[0.25 BTU/lbF * (16085 F)] = 85.33 lb/min of outside cooling air Stock intercooler, big turbo How will the same stock intercooler perform with a bigger turbo and more boost? Given 53 lb/min @ 350 deg F and 27 psig from the turbo to make 22 psig in the intake; 85 deg F outside temperature. Cooling air flow is still 85.33 lb/min. This requires some trial and error to solve since we don't know the intercooler outlet temperature. There IS a way to calculate it directly, but that involves some more equations and is a little tedious so I'll skip it and do it the hard way, by assuming an intercooler outlet temperature and then checking to see if it is right. I'll do that by calculating Q for the overall exchanger and then Q for just the turbo air; if they come out the same then my guess was correct. m=53 lb/min, Cp=0.25, U*A=20.1 lets start by assuming that the intercooler outlet temp = 140 Q = m * Cp * DT Then DT = (350  140 ) = 210 and Q = 2782.5 BTU/min Cooling air flow = 85.33 lb/min DT for the cooling air = Q/(m*Cp) DT = 2782.5 BTU/min / (85.33 lb/min * 0.25 BTU/lbf) = 130.4 F since DT = T out  T in, then 130.4 = T out  85 and T out = 215.4 F So the cooling air inlet is 85 F and the outlet is 215.4 F, and the turbo air inlet is 350 F and the outlet is assumed to be 140 F. Now calculate DTlm: P=0.792, R=0.62, and F=0.75 DT1=134.6, DT2=55 DTlm=(134.655)/ln(134.6/55) * 0.75 = 66.7 Now calculate a new Q, Q= UA * DTlm Q=20.1*66.7=1340.7 Since this isn't the same Q we got when we assumed an outlet temp of 140 deg, we have to get a new outlet temp and run through all this again. I'll assume a new intercooler outlet temp of 170. Q=(m*Cp*DT)=2385 cooling air DT = 2385/(85.33*0.25) = 111.8 Cooling air outlet = 85 + 111.8 = 196.8 P=0.68, R=0.62, F=0.84 DTlm=97.3 Q=1954.7 still not close enough Last try! T IC out = 182 Q=(m*Cp*DT)=2226 cooling air DT = 2226/(85.33*0.25) = 104.4 Cooling air outlet = 85 + 104.4 = 189.4 P=0.63, R=0.62, F=0.88 DTlm=111.0 Q=2232 close enough Well, this time the Q we guessed at (by guessing the IC outlet temp) and the Q we calculated from the overall equation are pretty close, so we can say we've found the answer. It appears that this intercooler, which worked fine in a basically stock application (cooling the air to the intake manifold to 140 deg F) isn't working as well in this high HP application, being able to cool the air down to only 182 deg! Last example: same turbo and air flow as before, but we have a new intercooler with the same heat transfer coefficient but 50% more area (intercooler and a half). We'll assume that it also flows 1.5 times the cooling air flow. U * A old IC = 20.1 U * 1.5 * A = 1.5 * 20.1 = 30.15 = UA for new intercooler m turbo air = 53 lb/min, Cp = 0.25 BTU/lbF, T in = 350 deg m cooling air = 1.5 * 85.33 = 128 lb/min, Cp = 0.25 BTU/lbF, T in = 85 F Assume intercooler outlet temp = 140 F Q = m*Cp*DT = 53 * 0.25 * (350140) = 2782.5 cooling air DT = 2782.5/(128*0.25) = 87 Cooling air outlet = 85 + 87 = 172 P=0.79, R=0.41, F=0.85 DTlm=89.0 Q=2684 not too bad, we'll try it once more Assume intercooler outlet temp = 142 F Q = m*Cp*DT = 53 * 0.25 * (350142) = 2756 cooling air DT = 2782.5/(128*0.25) = 86.1 Cooling air outlet = 85 + 86.1 = 171.1 P=0.78, R=0.41, F=0.86 DTlm=91.7 Q=2763 close enough So this tells us that in this high performance car the intercoolerandahalf outlet temperature is about the same as the outlet temperature of the stock turbo/stock intercooler car. 
Last updated: